Energy and Thermal Physics

Bounce efficiency

Classroom Activity for 11-14 IOP RESOURCES

In this activity, students investigate the relationship between drop-height and rebound-height for a tennis ball. You can use it to introduce the idea of efficiency.


Each students will need:

  • Metre rule
  • Tennis ball
  • Hard floor
  • Clamp stands to hold metre rule (optional)
  • Mobile phone that can record in slow motion (optional)


Ask students to:

  1. Drop the ball onto a hard floor from a height of 1 m.
  2. Devise a method for determining the height that the ball bounces up to (by eye or using slow motion video).
  3. Take repeat measurements to find an average bounce-height for a 1 m drop.
  4. Repeat for at least three other drop-heights.
  5. Plot a graph of drop-height against (average) bounce-height.
  6. Draw a best-fit straight line through your results and use the graph to predict the bounce-height from an unknown drop height (eg 2 m).

Teaching notes

Students should find that bounce-height and drop-height are proportionally related. Their gradient will depend on the ball and surface used, but will always be less than 1. They can calculate an average value for the bounce efficiency as a percentage by multiplying the gradient of their graph by 100%.

You could discuss how their ball's bounce effciency compares to that required for tennis tornaments. The International Tennis Federation stipulates that only balls that rebound to between 135 and 151 cm when dropped onto a concrete floor from a height of 254 cm can be used for professional play (this is known as the 100-inch drop test).

Learning outcome

Students can calculate the efficiency of a single bounce of a ball.

is used in analyses relating to Engines
Limit Less Campaign

Support our manifesto for change

The IOP wants to support young people to fulfil their potential by doing physics. Please sign the manifesto today so that we can show our politicians there is widespread support for improving equity and inclusion across the education sector.

Sign today